Both TALENs and CRISPR/Cas9 directly target the HBB IVS2–654 (C > T) mutation in β-thalassemia-derived iPSCs
نویسندگان
چکیده
β-Thalassemia is one of the most common genetic blood diseases and is caused by either point mutations or deletions in the β-globin (HBB) gene. The generation of patient-specific induced pluripotent stem cells (iPSCs) and subsequent correction of the disease-causing mutations may be a potential therapeutic strategy for this disease. Due to the low efficiency of typical homologous recombination, endonucleases, including TALENs and CRISPR/Cas9, have been widely used to enhance the gene correction efficiency in patient-derived iPSCs. Here, we designed TALENs and CRISPR/Cas9 to directly target the intron2 mutation site IVS2-654 in the globin gene. We observed different frequencies of double-strand breaks (DSBs) at IVS2-654 loci using TALENs and CRISPR/Cas9, and TALENs mediated a higher homologous gene targeting efficiency compared to CRISPR/Cas9 when combined with the piggyBac transposon donor. In addition, more obvious off-target events were observed for CRISPR/Cas9 compared to TALENs. Finally, TALENs-corrected iPSC clones were selected for erythroblast differentiation using the OP9 co-culture system and detected relatively higher transcription of HBB than the uncorrected cells. This comparison of using TALENs or CRISPR/Cas9 to correct specific HBB mutations in patient-derived iPSCs will guide future applications of TALENs- or CRISPR/Cas9-based gene therapies in monogenic diseases.
منابع مشابه
The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice
β-thalassemia results from point mutations or small deletions in the β-globin (HBB) gene that ultimately cause anemia. The generation of induced pluripotent stem cells (iPSCs) from the somatic cells of patients in combination with subsequent homologous recombination-based gene correction provides new approaches to cure this disease. CRISPR/Cas9 is a genome editing tool that is creating a buzz i...
متن کاملCRISPR/Cas9 system and its applications in human hematopoietic cells.
Since 2012, the CRISPR-Cas9 system has been quickly and successfully tested in a broad range of organisms and cells including hematopoietic cells. The application of CRISPR-Cas9 in human hematopoietic cells mainly involves the genes responsible for HIV infection, β-thalassemia and sickle cell disease (SCD). The successful disruption of CCR5 and CXCR4 genes in T cells by CRISPR-Cas9 promotes the...
متن کاملEnhancement of β‐Globin Gene Expression in Thalassemic IVS2‐654 Induced Pluripotent Stem Cell‐Derived Erythroid Cells by Modified U7 snRNA
The therapeutic use of patient-specific induced pluripotent stem cells (iPSCs) is emerging as a potential treatment of β-thalassemia. Ideally, patient-specific iPSCs would be genetically corrected by various approaches to treat β-thalassemia including lentiviral gene transfer, lentivirus-delivered shRNA, and gene editing. These corrected iPSCs would be subsequently differentiated into hematopoi...
متن کاملA Universal Approach to Correct Various HBB Gene Mutations in Human Stem Cells for Gene Therapy of Beta‐Thalassemia and Sickle Cell Disease
Beta-thalassemia is one of the most common recessive genetic diseases, caused by mutations in the HBB gene. Over 200 different types of mutations in the HBB gene containing three exons have been identified in patients with β-thalassemia (β-thal) whereas a homozygous mutation in exon 1 causes sickle cell disease (SCD). Novel therapeutic strategies to permanently correct the HBB mutation in stem ...
متن کاملOne-Step Biallelic and Scarless Correction of a β-Thalassemia Mutation in Patient-Specific iPSCs without Drug Selection
Monogenic disorders (MGDs), which are caused by single gene mutations, have a serious effect on human health. Among these, β-thalassemia (β-thal) represents one of the most common hereditary hematological diseases caused by mutations in the human hemoglobin β (HBB) gene. The technologies of induced pluripotent stem cells (iPSCs) and genetic correction provide insights into the treatments for MG...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015